Search
Profile

Ask your question

Close

What is Stress Management Program?

Machine learning models help identify, analyze, and predict stress in individuals and larger populations. Stress management programs use these models to help people improve their responses to stressors and thus reduce their overall stress levels.

With the expanding online fitness and wearable health device industries, there is an increased interest in health-related apps and devices; stress management programs that integrate with these apps and devices should continue to grow in size and number.

Details

Why Is It Important to Have a Good Stress Management Program?

Obviously, effective stress management improves people’s quality of life. But technologies that utilize machine learning programs can analyze large amounts of (usually biometric) data to help in this task. These models can identify stress levels and sources of stress, determine which management techniques are most effective for the individual, and predict their stress levels in the future. Furthermore, these programs can recommend stress management techniques that work best for a demographic, then further refine their recommendations to the individual

What Internal Data Should I Have for a Good Stress Management Program?

Stress management programs primary run on user data. They take in self-reported stress levels and physical symptoms as well as demographic information like age and sex since, as research indicates, stress responses tend to vary along these parameters.

More sophisticated stress management programs measure biometric data like muscle tension, electrodermal activity, and so on. Some can even measure stress responses too subtle for the wearer to consciously pick up on.

What External Data Is Essential for a Good Program?

When these programs can’t measure biometric data on their own, they rely on external sources, like wearable devices. Other biometric data can be utilized without being upgraded to a “smart device” version. Blood pressure monitors, for example, can provide data that users or patients can manually input.

Other important external data are habits and life events. As above, whether this information comes from other devices or is self-reported, information like sleep quality, upcoming exams, amount of exercise, mood, and eating habits are vital to an effective stress management program.

What External Data May Prove Useful for a Good Program?

Geospatial data can provide a lot of useful information for a stress management program. A city’s air quality or a state’s average number of daylight hours, for example, have huge impacts that individuals may not think to monitor.

What Are the Main Challenges of this Use Case?

In addition to user privacy, any stress management program must on some level rely on user self-reporting. If they forget something or choose to downplay or even lie about their mood or habits, the entire program becomes less effective, which, in turn, discourages usage.

Additionally, there will always be individuals who have unusual or idiosyncratic responses to stressors. Good machine learning programs can recognize and respond to these individuals’ data but it may take a while.

Interesting Case Studies and Blogs to Look Into

IJMLC: A Machine Learning Approach for Stress Detection using a Wireless Physical Activity Tracker
Health IT Analytics:

Tangible Examples of Impact

Some leaders in the health-tech space—including Garmin, Whoop, Samsung Health, and Oura—have previously tracked stress levels using heart rate data. But the newest wearables, coming to market in late 2020 and through next year, track stress in new ways. The latest Apple Watch Series 6 ($429) uses a built-in blood oxygen monitor to sense quick and shallow breathing, which can then be used to detect anxiety or panic attacks. Fitbit’s forthcoming release, the Fitbit Sense ($330) will be the first wearable to track stress through electrodermal activity, or how well skin conducts electricity. (Sensors on the rim pick up on moisture triggered by stress.)

Well+Good: Tracking Stress Is the New Tracking Steps

Relevant datasets

IBM MarketScan Research Databases

by ibm-the-weather-company

IBM MarketScan Research Databases provides one of the oldest continually-updated collection of health claims data in the USA. Organizations use this data to prove their value to healthcare professionals, insurers, and private individuals.

The data includes drug claims, dental claims, lab results, hospital discharges, and EMR data for millions of people in the country. It also contains workplace productivity data, telling institutions how many workplaces absences they suffer and how many of their healthcare workers suffer disability due to their work. 

4 (1)   Reviews (1)

Definitive Healthcare Hospitals & IDNs Database

by Definitive-Healthcare

Definitive Healthcare’s Hospital & IDNs Database provides benchmark data for hospitals and IDNs to compare against competitors and identify growth opportunities.

0 (0)   Reviews (0)

Zeta-Tools Health Research

by zeta-tools

Zeta-Tools Health Research conducts research among physicians, general population, and patients for marketing needs.

0 (0)   Reviews (0)

InfoClutch HealthCare Base

by infoclutch

HeathCare Base has a list of mailing and e-mail list of different professionals/business in the allied sciences industry.

0 (0)   Reviews (0)

HealthVerity Census

by HealthVerity

Healthverity Census provides and manages health information of a patient in one single source.

0 (0)   Reviews (0)

Similar Data Providers

  • The Arabesque GroupThe Arabesque Group
    5 (1)
    Reviews ()
    Data sets (4)
    Established in 2013, the Arabesque Group is a leading global financial technology company that combines AI with environmental, social and governance (ESG) data to assess the performance and sustainability of corporations worldwide. In addition to their Asset Management consultation service, the groups offers Arabesque S-Ray GmbH and Arabesque AI Ltd. datasets.
  • Black Box Intelligence Consumer Intelligence
    5 (1)
    Reviews ()
    Data sets (0)
    Black Box Intelligence Consumer Intelligence is designed to provide detailed analysis on individual competitor sales and performance data.
  • Home by Vendigi
    4.3 (3)
    Reviews (1)
    Data sets (1)
    Home by Vendigi provides audience data for all things home buyers, remodelers, and sellers. Their data comes from first-party sources like top multiple listing systems (MLSs) major brokers like RE/MAX, Coldwell Banker, Century 21, and Sotheby's. Users of Vendigi's Home data range from home and garden retailers to insurance institutions to telecom companies.