Ask your question


Product Performance Forecasting

What Is Product Performance Forecasting?

Product performance forecasting predicts future sales volumes—at what price, during which time, and in which market. In effect, it enables businesses to make informed decisions in both the short term and the long term.

Nowadays, companies rely on machine learning software for product performance forecasting as these programs continuously improve, providing businesses with faster and more reliable estimates all the time.

Why Is It Important to Have a Good Product Performance Forecasting Model?

A good machine learning (ML) model provides a more accurate forecast through a number of different means. It accelerates data processing speed, automates forecast updates based on the recent data, analyzes more data, identifies hidden patterns in data, creates a robust system, and increases adaptability to changes.

Machine learning improves the following forecasting methods:

  1. Supplier Relationship Management—supplier purchases and orders projected into the future
  2. Customer Relationship Management—indicates which product categories companies should purchase in the next period from a specific store
  3. Order Fulfillment and Logistics—supply chain optimization
  4. Marketing Campaigns—ads and marketing campaigns adjusted to better reach customers
  5. Manufacturing Flow Management—supervision of the whole manufacturing process

What Internal Data Should I Have for a Good Product Performance Forecasting Model?

Product performance forecasting relies on good quality data, so companies require a wide range of dependable data. E-commerce sales data, sales transactions, purchase orders, inventory, your own POS information, loyalty cards, customer service, websites, reviews, marketing campaigns, apps, in-store devices, texts, and some CRM data should be used to build a good prediction model.

What External Data is Essential for a Good Product Performance Forecasting Model?

Essential external data for a good forecasting model includes both factors specific to the company itself and larger trends. Local, microeconomic indicators may include customer shipping receipts, click streams, and local news or weather reports. Larger, macroeconomic indicators, on the other hand, may include market trends, census or demographic trends, or global supply chain data.

What External Data May Prove Useful for a Good Product Performance Forecasting Model?

The following external data may prove useful: third party syndicated data, customer POS information, household panel data, geolocation devices, and social media.

What Are the Main Challenges of the Product Performance Forecasting Use Case?

Almost all forecast tools rely on historical data to predict future outcomes, so estimating forecasts for new products can be challenging. This problem proves itself particularly evident in industries like consumer electronics, fashion, and books, where new product introductions account for the bulk of sales. To tackle such problems, companies usually resort to historical data of similar products to build a forecast.

Tackling variance in sales volume reveals another challenge: sales revenue is dynamic, influenced by economic, cultural, and legal factors. Even experienced data scientists find it difficult to determine the exact influence these labile outside factors have on historical sales patterns, much less whether they will continue to influence trends.

Interesting Case Studies and Blogs to Look Into

Just Analytics: Sales Forecasting in the Age of Machine Learning
Optymyze: 7 Ways Machine Learning Boosts Sales Performance and Drives Revenue Growth

Tangible Examples of Impact

[Additionally,] at a multinational food company, more than 30% of items are sold on promotion—accounting for nearly 70% of forecast error. The global foods company wanted to predict promotional lift to baseline demand to get timely production and balanced inventory deployment for channel and store supplies. Using machine learning, the company lowered forecast error 20% and lost sales by 30%. It increased service level to 98.6%, and realized a 30% reduction in product obsolescence. It also cut demand planner workload in half, allowing planners to focus on more value-added activities.

Five Ways Machine Learning Can Improve Demand Forecasting

Connected Datasets

Edge by Ascential – Retail Insight

by edge-by-ascential

Included as part of a software service, Edge by Ascential’s Retail Insight tracks retail data on thousands of retailers in nearly 200 markets to help you analyze your competition, measure your customers’ engagement, track market trends, and predict product performance. 

0 (0)   Reviews (0)

Sexual health and habits survey. Micro data


Micro-data from the 2003 survey on sexual health and habits Files are distributed in ASCII format and accompanied by the registration design in Excel or word format

0 (0)   Reviews (0)

Aumago B2B Text-Image

by Aumago

Aumago B2B Text-Image provides click-based text image campaigns.

0 (0)   Reviews (0)

Clutch B2B CRM & Customer Data Platform

by Clutch

B2B CRM & Customer Data Platform is a traditional B2B CRM systems were built for sales teams and sales funnels, not for marketers and customer journeys. The Clutch B2C CRM + CDP was created to nurture these unique relationships and optimize their value over time.

5 (1)   Reviews (1)

TrueNorth Insight


TrueNorth Insight is the company’s online software that helps firms in the manufacturing and distribution business compare various ERP software to find the right match with their products.

0 (0)   Reviews (0)