Search
Profile

Ask your question

Close

B2C Credit Risk

What is B2C Credit Risk?

Credit scoring is a statistical analysis performed by lenders and financial institutions to assess a person’s creditworthiness for mortgages, credit cards, and private loans. Credit scoring is used by lenders to decide whether to extend or deny credit.

Traditionally, credit bureaus rated a person’s credit score with a number between 300 and 850. As new types of lenders and insurers emerge, however, the traditional credit score becomes just one parameter among many that determine a person’s creditworthiness.

Why Is It Important to Have a Good B2C Credit Risk Model?

Good models let you rapidly explore data to build stand-alone predictive credit scoring models within business rules flows.

According to FICO, machine learning allows you to build an algorithm to map credit risk with fewer resource hours. For example, a single analyst took 40 hours to build an ML score showing slightly improved risk prediction over the FICO® Score 9 models (without ML) that took five analysts one month to build.

What Internal Data Should I Have for a Good B2C Credit Risk Model?

The following five categories influence credit scores:

  • Payment History (including consumer’s history of on-time payments)
  • Types of Credit
  • New Credit
  • Current Debt
  • Length of Credit

What External Data is Essential for a Good B2C Credit Risk Model?

Essential external data for a good B2C Credit Risk Model are the credit score of a spouse and the state of the economy. In a recession, for example, the likelihood that it will be more difficult to repay loans increases.

What External Data May Prove Useful for a B2C Credit Risk Model?

Other useful information for a B2C Credit Risk model is information from an application for a financial product or account as well as internal data on current or past customers.

What are the main challenges of a B2C Credit Risk Model?

Artificial intelligence is still new in the field of detecting credit risk, so the best models are still being built up.

Further, B2C credit scoring does not asses a borrower’s chance of default nor does does it take current fluctuating economic conditions into account. For example, a borrower who has an excellent credit score during an economic upturn may still default if the economy enters a recession. AI cannot predict that default unless it has already seen signs of the borrower struggling to pay bills on time.

Interesting Case Studies and Blogs to Look Into

Next Gen Personal Finance: A Tale of Two Credit Scores: A Case Study
Bank Bazaar: Credit Score – Facts, Myths & A Case Study

Tangible Examples of Impact

Machine learning could allow banks and other lenders to increase revenue by approving more credit invisible applicants and more applicants whose credit scores paint an incomplete portrait of their creditworthiness. ZestFinance, for example, claims to have helped Prestige Financial Services increase loan approvals by 14% with an ML-based credit model.

Emerj: Machine Learning for Underwriting and Credit Scoring – Current Possibilities

Connected Datasets

Zvelo Phishblocklist

by

Zvelo Phishblocklist enables devices and its users protected from phishing threats.

0 (0)   Reviews (0)

Intellect Design Arena iRTM

by

Risk & Treasury Management (iRTM) solution has a insurance software called Intellect SEEC that covers the distribution, underwriting and claims for non-life insurers.

0 (0)   Reviews (0)

Intellect Design Arena iGTB

by

Global Transaction Banking delivers a financial technology for global banking opportunities.

0 (0)   Reviews (0)

CharityCAN Prospect Research Software

by

Project Reaseach Software allows you to quickly search all of our datasets for donation records, compensation records and biographical information.

0 (0)   Reviews (0)

CharityCAN Donor Screening

by

Donor Screening enables you to find the donors that matter the most to you in your database.

0 (0)   Reviews (0)