Publishers access 100M+ product offers with category and attribute enrichment via a product feed, deep links, browser extension or API call to monetize their consumer experiences.
Drug discovery covers the whole field of the drug development process, from identifying chemical compounds that could become useful drugs to the clinical trial phase. The drug discovery process is long and complicated, with every stage ripe for implementation of artificial intelligence models.
A store’s location directly impacts supply, profits, marketing, and almost every other aspect of store performance. Much can be learned from the performance of different types of retail stores in different neighborhoods, countries, or even climate areas. Therefore, retailers use geospatial data machine learning models to plan store locations and predict profits.
Insurance claims management is the process of managing a claim from reception to settlement. The insurance claim process is particularly suited to machine learning solutions as much can be done to cut time and costs, leading to speedier resolution of claims to the satisfaction of both insurer and insured.
Everyone wants more leads, but the more we are able to generate, the harder it becomes to identify which of them are actually worth the time and effort spent in order to try to convert them. Lead scoring models let you automatically rank your leads in order of the perceived value each lead represents to your company. Resources for marketing and sales can then be distributed by the priority determined by lead scoring.
Skimlinks Merchant Data provides online transaction data and access to a network of 60,000 high quality publishers worldwide
CafeMedia Ad Management serves enterprise publishers with leading industry experience and web-based audience data and analytics
Publishers access 100M+ product offers with category and attribute enrichment via a product feed, deep links, browser extension or API call to monetize their consumer experiences.
Drug discovery covers the whole field of the drug development process, from identifying chemical compounds that could become useful drugs to the clinical trial phase. The drug discovery process is long and complicated, with every stage ripe for implementation of artificial intelligence models.
A store’s location directly impacts supply, profits, marketing, and almost every other aspect of store performance. Much can be learned from the performance of different types of retail stores in different neighborhoods, countries, or even climate areas. Therefore, retailers use geospatial data machine learning models to plan store locations and predict profits.
Insurance claims management is the process of managing a claim from reception to settlement. The insurance claim process is particularly suited to machine learning solutions as much can be done to cut time and costs, leading to speedier resolution of claims to the satisfaction of both insurer and insured.
Everyone wants more leads, but the more we are able to generate, the harder it becomes to identify which of them are actually worth the time and effort spent in order to try to convert them. Lead scoring models let you automatically rank your leads in order of the perceived value each lead represents to your company. Resources for marketing and sales can then be distributed by the priority determined by lead scoring.
Customer lifetime value (CLTV) is the expected profit that a single customer brings to a company over the course of their lifetime. CLTV represents a shift in emphasis from quarterly or annual profits to the long-term relationships with customers.
Most if not all companies and organizations seek to establish themselves in social media platforms such as Facebook, Twitter, and Instagram in addition to their official website. Online and social media performance tracking is meant to analyze the effectiveness of a company’s social media presence. Are they generating new leads? Are they promoting brand awareness? These questions are important to assess the efficiency of the use of these social media platforms.
An online recommendation engine is software that analyzes available user data to generate suggestions for something the user may also be interested in. Such engines are used in an advertising capacity to promote products or services or for the purpose of recommending similar content to the content the user has consumed in the past, such as in streaming services and online shopping services.
Price optimization is the mathematical analysis by a company determines the response of potential buyers to different prices for its products and services. The aim is to meet a company’s objectives of maximizing profits and growing and retaining a customer base.
Product performance forecasting predicts future sales volumes—at what price, during which time, and in which market. It enables businesses to make informed decisions in both the short term and the long term. Nowadays, companies rely on machine learning software for product performance forecasting as these programs continuously improve, providing businesses with faster and more reliable estimates all the time.
Promotional planning is the process of optimizing marketing tools, strategies, and resources to promote a product or service to generate demand and meet set objectives. Artificial intelligence (AI) can be used to effectively plan promotional events, measuring their outcomes, and adjusting as necessary to achieve growth.
Remarketing campaigns show ads to people who have visited a business’s website or downloaded one of its apps. Remarketing identifies people who have shown interest in a company in order to prompt them to recall the business, increasing the odds of them converting.
The shelf is a dynamic environment, where shoppers select items purposefully and on impulse, where store owners showcase products to entice customers in the store and online.
Inventory management does not just entail having the right stock but also ensuring said stock was effectively sourced, stored, and sold at the right price, at the right time.
Nowadays, the abundance of data and the advances in Machine Learning and big data applications reduce the need for top-down segmentation of customers. Smart customer clustering based on many commonalities help companies better address customer needs to provide the right experience and divide resources efficiently.
Case management is the optimization of customer care through the construction of a network of formal and informal activities, services, and supports.
Brand awareness is the degree to which a customer is able to recall and recognize your brand. Brand awareness is critical for promotion and marketing, especially for a young company. High brand awareness can result in a company becoming very popular or “trending.”
Exante Global Flow Analytics supports alpha generation and risk management by extracting comprehensive price signals from detailed capital flow analysis. Exante complements hard data and raw model outputs with timely, narrative-based content, focusing on key global thematics and risk scenarios. Additionally, Exante maintains dialogues with their clients, providing bespoke coverage and service.
Stirista offers data that politicians and advisors can use to reach out to constituents and donors. Stirista has (so far) 150 million registered voter details sorted into 360 data points, including donation history. With this contact, demographic, web, and behavioral information, Stirista Political Data enables targeted advertising and outreach.
Stirista can also provide historical campaign data at all levels to help politicians plan effective political strategies.
Acxiom Infobase provides customer insight data for targeted marketing campaigns in a wide variety of industries
Acxiom Personix offers people and customer lifetime value data as well as consumer behavior profiles
AnalyticsIQ’s BusinessCore Database provides B2B marketing data on 18 millions businesses and 60 million business professionals.
The BusinessCore Database collects company data and people data. The company data includes contact information, purchase drivers (price, for example), and transaction history. The people data includes personnel contact data, role in the company, and purchase transaction history.