As an application of blockchain technology, crowdsales are generally unregulated, allowing investments to reach startups faster and without fees. Additionally, although investors may hold onto their coins or tokens to receive dividends as if they enjoyed shares in the company, they do not have enjoy the same control over company management. Startups then enjoy a level of managerial freedom that companies previously did not have.
Finally, in addition to providing much-needed capital to startups, crowdsales provide crucial measures of the level of interest in a new project.
Since most cryptocurrencies are not yet regulated by a central authority, crypto owners cannot store their currencies in traditional bank accounts. Thus, cryptocurrency wallets (or crypto wallets) were developed.
These wallets generally come in the form of either software or hardware—also called hot or cold wallets. Hot wallets connect to the internet and allow the owner to both receive and send crypto tokens. Cold wallets, on the other hand, do not connect to the internet. For this reason, hot wallets have more security features than cold wallets.
Banks, credit unions, credit card companies, insurance companies, stock brokerages, investment funds, and more must report their activities to government regulatory agencies. Following financial crises in the late 2000s, regulatory compliance has become stricter and more onerous on financial services companies like those listed above.
From the stricter need for reporting and the massive amounts of data generated by financial institutions, the regtech industry has sprung up, combining regulatory reporting and big data technology.
Pipz Customer Data serves both sales and customer lifecycle uses with web traffic, live chat, email campaign, and internal CRM data
Nowadays, the abundance of data and the advances in Machine Learning and big data applications reduce the need for top-down segmentation of customers. Smart customer clustering based on many commonalities help companies better address customer needs to provide the right experience and divide resources efficiently.
The abundance of job seekers nowadays leads many companies to use machine learning throughout their recruitment process. Some examples of this can be found in the fields of talent management, talent attraction, and candidate selection.
Talent management entails understanding the best fields, positions, and backgrounds to set talent up for success. Talent attraction selects the top outlets and channels for attracting the most suitable employees. Finally, candidate selection use neuro-linguistic programming (NLP) tools on CV’s to find suitable candidates.
Everyone wants more leads, but the more we are able to generate, the harder it becomes to identify which of them are actually worth the time and effort spent in order to try to convert them. Lead scoring models let you automatically rank your leads in order of the perceived value each lead represents to your company. Resources for marketing and sales can then be distributed by the priority determined by lead scoring.
Most if not all companies and organizations seek to establish themselves in social media platforms such as Facebook, Twitter, and Instagram in addition to their official website. Online and social media performance tracking is meant to analyze the effectiveness of a company’s social media presence. Are they generating new leads? Are they promoting brand awareness? These questions are important to assess the efficiency of the use of these social media platforms.
Product performance forecasting predicts future sales volumes—at what price, during which time, and in which market. It enables businesses to make informed decisions in both the short term and the long term. Nowadays, companies rely on machine learning software for product performance forecasting as these programs continuously improve, providing businesses with faster and more reliable estimates all the time.
Promotional planning is the process of optimizing marketing tools, strategies, and resources to promote a product or service to generate demand and meet set objectives. Artificial intelligence (AI) can be used to effectively plan promotional events, measuring their outcomes, and adjusting as necessary to achieve growth.
AI has been used to improve supply chain and demand forecasting for a couple of decades. Demand planning applications use data driven algorithms to take historical data and use it to forecast. Demand forecasting can include promotion planning or stock and sales forecasting. The machine looks at the forecast, compares it to actual shipments, and suggests alternatives and optimization options. Over time, many companies started doing more specific forecasting for specific regions, products or stores or for more granular points in time. Both retailers and their suppliers (CPG companies or 3rd party shipping and supply chain companies) use their data to help conduct automated decision making within the supply chain.
USA High School Student Marketing Database by ASL Marketing dataset provides information regarding: and more.
USA College Student Database – ASL Marketing dataset provides information regarding: and more.
Student Marketing Data – Reach Out to Students With Our Customizable Student Data dataset provides information regarding: and more.
B2C Contact Data – Global Contact List – Reach B2C Audience Globally With Our Verified 200M+ B2C Contact Data dataset provides information regarding: and more.
Small Business Contact Data – Reap Higher ROI With Our Small Business Owners Data dataset provides information regarding: and more.