Ask your question


What Is Physical Biometrics Data?

Physical biometrics (sometimes called physiological or even static biometrics) refers to the collection and analysis of physiological features on the human body that can serve as identification, such as a fingerprint or retina scan. These traits can identify individuals and measure their health markers.

While most often used for humans, physical biometrics can also apply to animals. Dog nose prints, for example, are analogous to human fingerprints; having nose prints on record can help owners recover lost or stolen pets.

Where Does Physical Biometrics Data Come From?

Nowadays, sensors, scans, MRIs, and wearable technology record physical biometrics data instantly. However, low-tech recordings still exist, such as fingerprints taken with ink onto a card or the basic method of recording heartbeat per minute – recorded on paper after holding your fingers to your wrist for thirty seconds and doubling the number.

Due to the security and healthcare applications, most databases are either unavailable to the public or anonymized. Healthcare-related biometric data, however, exist in large numbers online and in libraries.

What Types of Columns/Attributes Should I Expect When Working with This Data?

A large portion of this data is available in the form of images: fingerprints, faces, brain scans, etc. Machine learning programs then scan the images to find unique patterns that either identify individuals or identify irregularities that doctors should investigate, depending on your purpose of analyzing the data.

Other data may appear in columns or charts, as desired. Heartbeat, perspiration, respiration in response to stimuli, etc. are more clearly understood in a time series.

What Is Physical Biometrics Data Used For?

Commercial, public, and other organizations use physical biometric data to enhance security. Often, they combine biometrics with traditional measures like passwords to increase security.

Healthcare providers and individuals also use this data to measure health and many people use their own personal data to measure progress on health or fitness-related goals.

How Should I Test the Quality of This Data?

A security-related physical biometrics data set should be large enough to differentiate between individuals in the data set. However, if it is too large, the machine learning program loses efficacy.

Healthcare-related physical biometrics data, on the other hand, records new data alongside past data in order to track progress and to draw a comparison. This is true whether the data set measures an individual or a population.

In all cases, the data recorded must be crystal clear (if an image), complete, and up-to-date.

Interesting Case Studies and Blogs to Look Into

Medium: Top 4 Modern Use Cases of Biometric Technology
Thales Group: Biometrics: definition, trends, use cases, laws and latest news

Tangible Examples of Impact

Tech5 has launched an updated facial recognition engine for touchless access control and time and attendance applications, with built-in mask detection.

The new T5-Face is suited for use in products designed for identification of people in non-cooperative situations, regardless of challenges like partial facial occlusion with masks or sunglasses, or poor lighting, according to the announcement. In cooperative-subject applications, or implemented on mobile devices, the system may ask people to lower their masks for faster and more accurate identification.

Biometric Update: Face, vein, fingerprint biometrics upgrades for physical access control systems announced

Connected Datasets

B2BSignals Cybersecurity Review

by B2BSignals

B2BSignals Cybersecurity Review is designed to help users to conduct research and comparison among cybersecurity solutions.

0 (0)   Reviews (0)

ID Analytics Authentication & Verification

by ID_Analytics

Authentication & Verification can help to authenticate nearly every U.S. consumer by tapping into the unique cross-industry data in the ID Network

0 (0)   Reviews (0)

ID Analytics Fraud Risk Management Solutions

by ID_Analytics

ID Network Attributes for Fraud deconstructs ID Score, tapping into the unique blend of cross-industry consumer behaviors in the ID Network to provide meaningful insights.

0 (0)   Reviews (0)